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Abstract

The convectively coupled equatorial waves (CCEWs), including the Kelvin, mixed-Rossby gravity
(MRG), eastward inertio-gravity (EIG), and westward inertio-gravity (WIG) waves, are dominant
synoptic-scale waves in the tropics. In this study, the modulation of the CCEWs by the MJO is
examined with observational data from 19852005 over the Indian Ocean (I0), Maritime Continent
(MC), and Western Pacific (WP). We find that the MRG wave is strengthened (weakened) to the west
(east) of the MJO convection. In contrast, the Kelvin, WIG and EIG waves are mostly strengthened
over the MJO convective center. As MJO modulates the background vertical wind shear and moisture
fields, a further analysis was conducted to reveal the relationship between the background dynamic
and thermodynamic field changes and the wave intensity change. A significant negative correlation
between the MJO-scale vertical wind shear and the MRG intensity variation suggests that the MRG
wave is primarily modulated by the dynamic field. The intensity changes of the WIG and EIG waves
are significantly correlated to the MJO moisture field. The Kelvin wave, which has both quasi-
geostrophic and gravity wave nature, is modulated by both the MJO-scale vertical wind shear and
specific humidity.

1. Introduction

Convectively coupled equatorial waves (CCEWs) are characterized by the organized eastward or westward
propagating cloud systems and significantly contribute to the synoptic-scale variability in the tropics. During
their propagation, the CCEWs play an important role in tropical cyclone genesis (Bessafi and Wheeler 2006,
Schrecketal 2011, Schreck etal 2012, Wu and Takahashi 2018), interaction with the MJO (Wangand Li 2017,
Kikuchi etal 2018, Takasuka et al 2019), and modulation of diurnal rainfall variability (Baranowski et al 2016,
Van Der Linden et al 2016, Chen et al 2019). Because of the vital influence of CCEWs on tropical weather and
climate systems, enormous effort has been devoted to exploring the horizontal and vertical structure,
propagation and evolution characteristics of the CCEWs (Yang et al 2003, Yang et al 2007a, 2007b, 2007c,
Kiladis et al 2009, Yasunaga and Mapes 2012, Yuni et al 2019).

The Madden Julian Oscillation (MJO) is often described as a large-scale convective envelope with a planetary
scale of circulation (Madden and Julian 1971, 1972, Li and Zhou 2009), a Kelvin and Rossby wave couplet
structure (Hendon and Salby 1994, Adames and Wallace 2014), a vertically westward tilting structure
(Sperber 2003, Hsu and Li 2012) and slow eastward propagating speed of 5-10 m s~ ' (Wang 1988, Rui and
Wang 1990). It is the dominant intraseasonal oscillation in the tropics. Nakazawa (1988) showed the hierarchical
structure of the MJO convective envelope. Within the MJO convective envelope, there are eastward propagating
super cloud clusters, which is comprised of the westward propagating individual cloud clusters. The hierarchical
structure of the MJO envelope suggests that there is a strong coupling between the MJO and the CCEWs.

©2021 The Author(s). Published by IOP Publishing Ltd
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Although previous observational analyses revealed the fundamental features of the CCEWs and MJO, how
they interact with each other is still an open question. Previous studies showed that the intensity of CCEWs
depends on the MJO phase (Aiyyer and Molinari 2003, Roundy 2008, Yasunaga 2011, Dias etal 2013, Zhu et al
2019). Because of the large-scale nature of the MJO, the MJO can be regarded as a background state that affects
the CCEWs. Previous works suggested that the MJO-scale zonal wind is a primary factor that affects the CCEWs
(Zhang and Webster 1989, Wang and Xie 1996, Dias and Kiladis 2014). For example, in a two-level theoretical
model, Wang and Xie (1996) showed that the vertical shear of zonal wind plays an important role in modulating
the equatorial Rossby waves. Han and Khouider (2010) investigated the instability of the convectively coupled
waves in a sheared environment with a simple multicloud model and noticed that different vertical shear profiles
could destabilize different equatorial waves. The MJO-scale thermodynamic variable, such as specific humidity,
is also regarded as an important factor in changing the characteristics of CCEWs (Lin et al 2008, Wang and
Chen 2016,2017). Wangand Li (2017) discovered that the phase speed of the convectively coupled Kelvin wave
was greatly modulated by boundary layer moisture. However, most of these works were based on theoretical or
intermediate models. In this study, we will investigate the relationship between CCEWs and MJO using an in-
depth observational analysis. In particular, we will examine the scatter relationship between the intensity of the
CCEWs and MJO-scale dynamic and thermodynamic fields separately. Through this analysis, we intend to
reveal the roles of the dynamic and thermodynamic fields in modulating the intensity of different CCEWs.

The rest of the paper is organized as follows. The observational datasets and analysis methods used in this
work are given in section 2. Section 3 shows the observed relationship between MJO and various CCEWs and
possible mechanisms behind the observational phenomena. Finally, a conclusion and discussion are presented
in section 4.

2.Data and methods

2.1.Data

The 20-year brightness temperature data from the Cloud Archive User Service (CLAUS) project (Hodges et al
2000) is used to conduct the frequency-wavenumber analysis similar as described by Wheeler and Kiladis (1999).
The original data is three-hourly in time and 0.5° in horizontal resolution. In this analysis, we use the data
spatially regridded into coarser resolution (1° latitude x 1°longitude) on the latitudinal bands between 20 °N—
20 °S. The brightness temperature data is twice daily (0 h and 12 h), with period from 1985 through 2005. The
interpolated outgoing longwave radiation (OLR) from the National Oceanic and Atmospheric Administration
(NOAA) polar-orbiting satellites (Liebmann and Smith 1996) is used to describe the convective activity of the
M]JO. The atmospheric three-dimensional reanalysis data employed in this study are provided by European
Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis (ERA-Interim) (Dee et al 2011), including
the zonal and meridional wind (1 and v), vertical pressure velocity (w) and specific humidity (q). The NOAA
OLR and ECMWF reanalysis used in this study are daily data in the winter (November-April) of 1985-2005 with
2.5° x 2.5° spatial resolution.

2.2.Methods

A20-100 day Lanczos band-pass filtering is utilized to extract the MJO signal (Duchon 1979). To achieve
statistically significant results, MJO convective phases in three major activity regions are examined: tropical
Indian Ocean (10, 0°-10 °S, 85°-95 °E); Maritime Continent (MC, 5 °S-15 °S, 125°~135 °E); and tropical
Western Pacific (WP, 5 °S-15 °S, 165°-175 °E) (figure 1(a)). An MJO active (suppressed) phase is defined when
the box averaged OLR anomaly is smaller (larger) than one negative (positive) standard deviation (Hsu and
Li2012, Wang et al 2019). All of the diagnosis results are composed based on the difference between the MJO
active and suppressed phase.

The CCEWs are extracted according to the spectral peaks in the wavenumber-frequency analysis of the
brightness temperature data (Wheeler and Kiladis 1999) (figures 1(b), (c)). The wavenumber-frequency analysis
is also conducted with the daily OLR data, which shows well analogous spectral peaks as those analyzed with
brightness temperature data (figure not shown). Because there is an overlap of the frequency between the MJO
and the Rossby wave, the Rossby wave is not investigated in this study. The specific CCEWs studied in this work
are all on the synoptic time scale. They include the mixed-Rossby gravity (MRG), n = 0 eastward inertio-gravity
(EIG),n = 1 westward inertio-gravity (WIG), and Kelvin waves. These CCEWs are extracted using the space-
time filtering of a specific field. The field must represent the most essential feature of the CCEWs and is different
for different waves. It is meridional wind for MRG wave, zonal wind for Kelvin wave and vertical velocity for
n = 0EIGandn = 1 WIG waves.
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Figure 1. (a) The standard deviation of the 20-100-day filtered OLR (unit: W m ). The three black boxes indicate the regions to
choose the MJO events: 10 (0°-10 °S, 85°-95 °E), MC (5 °S—15 °S, 125°-135 °E) and WP (5 °S-15 °S, 165°~175 °E). (b) The
wavenumber-frequency power spectrum of the symmetric component of brightness temperature between 15 °5-15 °N for January
1985 to December 2005, plotted as the ratio between raw brightness temperature power and the power in a smoothed red noise
background spectrum. (c) as for (b), but for anti-symmetric component. The polygons indicated by the thick red lines are the wave-
filtering bands for filtered waves. The band for the Kelvin wave is periods of 3 — 15 day, wavenumbers of 2 —14; The band for then = 1
WIG wave is periods of 1 — 3 day, wavenumbers of —1 — —15; The band for then = MRG s periods of 3 — 10 day, wavenumbers of
—1 — —10. The band for then = 0 EIG wave is periods of 2 — 5 day, wavenumbers of 0 — 15.

3. Modulation of the CCEWs by the MJO

The horizontal structures of the MJO convection and circulation in the three locations are presented in figure 2.
The longitudes of the MJO convective centers are in 90 °E, 130 °E and 170 °E. In the IO, the MJO low-level flow
reverses its direction at the MJO convective center, with westerly to the west and easterly to the east of the
convective center. Zhang (2005) described this relationship between the MJO convective center and zonal wind
as the MJO model I phase. When MJO moves to the MC and WP, the low-level westerly prevails over and to the
west of the MJO convective center and a low-level easterly exists to the east of the convective center, which is
similar to the MJO model II structure described in figure 6 of Zhang (2005). The vertical wind shear of the MJO
circulation shows a dipole structure, and its phase coincides with the low-level flow, with easterly (westerly)
shear occurring in the region of low-level westerly (easterly). The vertically integrated moisture anomaly field
shows an in-phase spatial relation with the MJO convective center.

In order to test whether the chose specific fields can represent the different CCEWs, we use these fields as
reference variables to regress the structures of the CCEWs. The 850 hPa space-time filtered specific field of each
wave averaged over 5 °S-5 °N, 85°-95 °E is regressed against the 850 hPa winds and the OLR fields to obtain the
composite structure of the waves (figures not shown). The regressed patterns of CCEWs in the IO are compared
with their structures shown in Kiladis et al (2009). In Kiladis et al (2009), the structures of 850 hPa winds and the
OLR are obtained by regressing onto the intraseasonal filtered brightness temperature in the Central Pacific.

3
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Figure 2. (a) Horizontal structures of MJO-scale vertical wind shear (shading, 200 hPa minus 850 hPa, unit: m s 1), OLR (contour,
unit: W m~2) and 850 hPa wind anomalies (vector, unit: ms ") in IO (MJO active phase minus MJO suppressed phase). (b), (¢) Asin
(a), but for the MC and WP regions. (d) Horizontal structures of vertically integrated (1000-300 hPa) MJO-scale specific humidity
(shading, unit: g kgfl), OLR (contour, unit: W m™~2) and 850 hPa wind anomalies (vector, unit: m s ") in IO (MJO active phase minus
MJO suppressed phase). (e), (f) As in (d), but for the MC and WP regions.

Although we conduct regression with different reference variables and in different locations, the structures of
the CCEWs display analogous features as shown in Kiladis et al (2009), which provides the confidence to use
these specific fields to further investigate the modulation of MJO on the CCEWs. The structures of CCEWs in
MC and WP are similar to IO but the intensity is weaker in the MC and stronger in the WP (figures not shown).

The specific field of the MRG wave, meridional wind, has a maximum value at the equator (Matsuno 1966,
Chen and Huang 2009), so it is used as a proxy to measure how strong the MRG wave is modulated by the MJO.
The difference in standard deviation (STD) of the MRG wave meridional wind between the MJO active and
suppressed phase is presented to show such modulation. Because of the convective center of the MJO biases to
the Southern Hemisphere in boreal winter, the center of the MRG wave’s intensity change also appears more
southward rather than in the equator. The STD difference of the MRG wave is averaged meridionally in the
Southern Hemisphere where has maximum intensity change. The meridionally averaged STD differences of the
MRG wave over the IO, MC and WP show a positive amplitude in the middle to lower troposphere with a
maximum around 600 hPa (figure not shown). Figure 3(a) illustrates the horizontal pattern of the STD
difference of the MRG wave at 600 hPa. The enhanced MRG wave activity appears to the west of the MJO
convective center, and the weakened MRG wave intensity appears to the east.

The vertical velocity is chosen as the characteristic variable forn = 0 EIGandn = 1 WIG because vigorous
upward motion is closely related to the convection of the IG waves. Unlike the MRG wave, the most pronounced
variances of the IG waves manifest in the upper troposphere (figure not shown). Figures 3(b) and (c) show the
STD differences of the vertical velocity field of then = 0 EIGandn = 1 WIG waves between the MJO active and
suppressed phase at 300 hPa. Although the convective center of the WIG wave locates over the equator and the
convective centers of the EIG wave straddle the equator, both of their variance centers appear in the South
Hemisphere because of the location of the MJO convective center. Unlike the MRG wave that has a dipole
pattern (figure 3(a)), the maximum intensity change of the two IG waves concentrates over the MJO convective
center.

Because the Kelvin wave has a maximum zonal wind at the equator, the zonal wind is selected as the
characteristic variable to represent its intensity change. The vertical-longitude cross-sections of the STD
difference of the Kelvin wave zonal wind indicate that the MJO modulation to the Kelvin wave is strongest near
600 hPa (figures not shown). Figure 3(d) shows the horizontal structure of the Kelvin wave modulated by the

4
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Figure 3. (a) Difference of standard deviation of MRG meridional wind at 600 hPa (shading, unit: 107" m s ') between MJO active
and suppressed phase and the horizontal structure of the OLR anomalies (contour, unit: W m™?) in the IO (MJO active phase minus
MJO suppressed phase). (b), (c) Asin (a), but for then = 0 EIGand n = 1WIG waves vertical velocity (unit: 10> Pa s~ ') at 300 hPa.
(d) Asin (a), but for the Kelvin wave zonal wind at 600 hPa (shading, unit: 10~ "' m s™Y. (e)—(h), ()—() As in (a)~(d), but for the MC
and WP regions.
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MJO at 600 hPa. It exhibits a combined feature of MRG and IG waves. While a maximum wave intensity change
appears over the MJO convective center, there is a clear east-west opposite change, with a weakened
(strengthened) activity to the east (west) of the MJO convective center.

Compared to the IO, the intensity modulations of the four equatorial waves in the MC and WP display
similar vertical and horizontal patterns. The maximum intensity changes in these two regions are located slightly
southward owing to the fact that MJO centers shift further into the Southern Hemisphere (figures 3(e)—(h),
(1)—(1)). Comparing with the other two regions, the intensity changes of the MRG and CCKW waves are relatively
stronger and the intensity changes of the two IG waves are relatively weaker in the MC.

The different CCEWs show distinctive longitudinal distributions of intensity change which implies different
MJO impacts on these waves. To determine to what extent the amplitude of an equatorial wave is controlled by
the dynamic or thermodynamic field of the MJO, we plot a scatter diagram between the wave intensity change
index and the MJO dynamic or thermodynamic field. We then focus on two MJO fields, vertical wind shear and
specific humidity. Each of the three regions (60°-120 °E for the IO, 100°~160 °E for the MC, and 140 °E~160 °W
for the WP) along the latitude of 0°-20 °S is divided into equally distributed boxes (10° in longitude). We also
conducted the sensitivity tests with changes in the size of the boxes and found the size change did not affect the
main result. The STD differences averaged in these boxes are defined as the wave intensity indices.

Figure 4(a) shows a scatter diagram of the intensity index for the MRG wave and MJ O vertical wind shear
averaged at each box. Different colors denote the three different regions (10, MC and WP). To remove the MJO
moisture effect, a partial correlation calculation is performed. It is noted that the intensity of the MRG wave is
significantly correlated with the MJO vertical wind shear, with a high negative partial correlation coefficient
(—0.83). However, no significant correlation is discovered between the intensity of the MRG wave and the MJO
specific humidity (figure 4(b)). The result is congruous with the theoretical analysis of Wang and Xie (1996), who
found that the background easterly (westerly) wind shear favors (inhibits) the development of the MRG wave in
the lower troposphere through the coupling of the barotropic and baroclinic components of the MRG wave.
However, the MRG wave is not sensitive to the change in background moisture because its wind field is large in
the rotational component but weak in the divergent component.

Figures 4(c)—(f) indicate that the intensity changes of both then = 0 EIGandn = 1 WIG waves have
significant positive correlations with the MJO specific humidity, but not with the MJO vertical wind shear. The
high correlations (about 0.85) between MJO specific humidity and the intensity of n=0 EIG and n=1 WIG
waves can be explained by their dominant convergent component of the flows. There is higher background
specific humidity field associated with an active phase of MJO so the two IG waves can converge more low-level
moisture, which causes more condensational heating release and strengthens the wave intensity.

The relation between the Kelvin wave and the MJO background state is more complicated because the Kelvin
wave has a semi-quasi geostrophic feature and a gravity wave nature. As a result, the Kelvin wave exhibits a
significant correlation with both MJO vertical wind shear and specific humidity (figures 4(g)—(h)). Therefore,
the Kelvin wave can be regarded as a special wave controlled by both the rotational and divergent flows. The
enhanced (weakened) Kelvin wave activity to the west (east) of the MJO convective center seems not discussed in
previous theoretical and modeling studies.

4, Conclusion and discussion

Tropical convection frequently occurs in different temporal and spatial scales, ranging from the diurnal cycle
and CCEWs to MJO and ENSO. These multi-scale convective systems interact with each other. In this study, we
investigate the modulation of the CCEWs by the large-scale MJO fields with observational data during
1985-2005. We focus on MJO activity over three key regions (I0: 0°~10 °S, 85°-95 °E; MC: 5°~15 °S, 125°~

135 °E; WP: 5°-15 °S, 165°~175 °E), and examine the overall impact of the MJO on the CCEWs in these regions.
A space-time spectral analysis of the brightness temperature is conducted, and different specific fields are used to
extract four types of high-frequency CCEWs: MRG; n = 0EIG;n = 1 WIG; and Kelvin waves.

Regardless of the MJO location (IO, MC or WP), the MRG wave is always enhanced (weakened) to the west
(east) of the MJO convective center, where the MJO-scale easterly (westerly) shear dominates. On the other
hand, the two IG waves are strengthened over the MJO convective center. The modulation of the Kelvin wave
shows the feature combined with the MRG and IG waves. The Kelvin wave intensity is strengthened over and to
the west but weakened to the east of the MJO convection.

The relative roles of the MJO dynamic and thermodynamic fields in modulating the equatorial waves are
investigated through a scatter diagram analysis. The intensity of the MRG wave displays a statistically significant
correlation with the MJO vertical wind shear but an insignificant correlation with the MJO specific humidity.
The modulation of the MRG wave is in great contrast to the IG waves, which are significantly correlated with the
M]JO specific humidity but not significantly correlated with MJO vertical wind shear field. The MRG wave is
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Figure 4. (a), (b) Scatter diagrams between the intensity index of the MRG and MJO vertical wind shear (left) and specific humidity
(right). A partial correlation coefficient is shown in the top right of each panel. (c)—(h) Asin (a), (b), except for then = 0EIG,n = 1
WIG and Kelvin waves. Red, blue and green asterisks indicate the values from 10, MC and WP, respectively. The black line represents
the least squared regression fit.
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dominated by rotational flow so that it is more sensitive to the forcing of vertical wind shear, whereas the IG
waves are dominated by divergent flow so that they are more sensitive to diabatic heating induced by moisture
convergence. Due to the coexisting natures of semi-quasi geostrophy and gravity wave, the Kelvin wave is
sensitive to both the MJO dynamic (vertical wind shear) and thermodynamic (moisture) fields.

Previous studies showed that the current state-of-art climate models still have difficulty in simulating the
observed CCEWs (Hungetal 2013, Wang and Li 2017), and there is a close relationship between the simulated
MJO and the CCEWs (Guo et al 2015, Zhu and Li 2019). This study reveals the observed relationship between the
intensity of the CCEWs and MJO vertical wind shear and specific humidity. Such observations may provide
insight into how to improve the simulation of CCEWs intensity in the climate models.
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